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1 Recap of last lecture

These are the important quantum errors to correct

1. X : |0⟩ 7→ |1⟩ and |1⟩ 7→ |0⟩. Also known as “bit flip”.

2. Z : |0⟩ 7→ |0⟩ and |1⟩ 7→ − |1⟩. Also known as “phase flip”. Its action is interesting in
the Hadamard basis, |+⟩ 7→ |−⟩ and |−⟩ 7→ |+⟩, which is a bit flip.

3. Y = iXZ : First applies Z and then X. This describes an error model where both X
and Z errors.

We want to construct codes resilient against these errors. Last time we saw the 3-qubit
bit flip code that encodes a |0⟩ + b |1⟩ → a |000⟩ + b |111⟩. In quantum we have no cloning,
this only clones in the standard basis and can correct a single bit flip but no phase flips at
all.

The natural next question is, can we defend against phase flips?

2 3-qubit phase flip code

A phase flip is just a bit flip in the H basis. So we just take the bit flip code and do it in H
basis.

|0⟩ 7→ |0L⟩ ≡ |+++⟩ (1)

|1⟩ 7→ |1L⟩ ≡ |− − −⟩ (2)

This is encoding the standard basis and it extends by linearity to a general state.

|ψ⟩ = a |0⟩+ b |1⟩ 7→ a |+++⟩+ b |− − −⟩

Question: Why do we describe the encoding in standard basis and not Hadamard basis?
The other way also probably works but we’ll see later that there’s a reason to do it this way.
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Figure 1: Encoding circuit for the 3 qubit phase flip code.

There was a question last time about the CNOT gate. For a, b ∈ {0, 1}, it takes |a⟩ |b⟩ →
|a⟩ |a⊕ b⟩.

2.1 Errors

It detects errors the same way as last time but in a different basis. For example, we have our
encoded state |ψL⟩ = a |000⟩+ b |111⟩ and it encounters a Z error on the third qubit, i.e, the
error flips the + and − in the third qubit,∣∣∣ψ̃L

〉
= IIZ |ψL⟩ = a |++−⟩+ b |− −+⟩

To correct the error, if we measure the state, it will collapse. So we’ll only measure the
error syndrome, the relative parity: for every two qubits, whether they are different. Last
time we did this in the std basis, now we do it in the H basis.

|ψ⟩

H H

H H

H H

|0⟩

|0⟩

Figure 2: Circuit for phase flip detection.

Question: If we add the circuit for creating the logical state before this, won’t the H gates
cancel out?
We are assuming that the error happens in between. Right now, we’re also assuming that
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our measurement is error free.

For example, on
∣∣∣ψ̃L

〉
, the circuit will first take,

a |++−⟩+ b |− −+⟩ 7→ a |001⟩+ b |110⟩

Then it applies the exact same circuit as last time on this state after appending the syndrome
qubits.

(a |001⟩+ b |110⟩)⊗ |00⟩ 7→ (a |001⟩+ b |110⟩)⊗ |10⟩

The syndrome bits are actually telling us the location of the errors. So |10⟩ tells us that
a Z error occurd on the 3 qubit. Sometimes it is written as |Z on 3⟩.

Now we can measure the syndrome and know the error location without changing the
state. Then, we can apply the Z back to correct it.

2.1.1 Bit flip error

In the +/− basis, it negates the −.

IXI |ψL⟩ = a |+++⟩ − b |− − −⟩

This is not an error you can detect, just like the bit flip code, it is a valid encoding of
another state |φ⟩ = a |0⟩ − b |1⟩:

|φL⟩ = a |+++⟩ − b |− − −⟩

We have the same issues with these errors, they get 3 time worse because the code is 3
times as likely to bit flip.

3 Shor’s 9 qubit code

This is an example of code concatenation. First we encode using the bit flip code and then
encode using the phase flip code.

|0⟩ → |+++⟩ (3)

→ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩) (4)

= |0L⟩ (5)

|1⟩ → |− −−⟩ (6)

→ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩) (7)

= |1L⟩ (8)

This extends to a general |ψ⟩ by superposition,

|ψ⟩ = a |0⟩+ b |1⟩ 7→ a |0L⟩+ b |1L⟩
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3.1 Bit flip errors

Suppose the bit flip happens on the first qubit of |ψ⟩L,

X1 |ψL⟩ = a (|100⟩+ |011⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)+
b (|100⟩ − |011⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩) (9)

To detect this error, for each group of 3 qubits, calculate the parity of every pair of
qubits. For the first group, we will see an error. The parities in the other groups should be
0. Correcting the error is exactly the same as the bit flip code.

3.2 Phase flip

Suppose the phase flip happens on the first qubit,

Z1 |ψL⟩ = a (|000⟩ − |111⟩)⊗ (|000⟩+ |111⟩) + (|000⟩+ |111⟩)
+b (|000⟩+ |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩) (10)

We can defend against a phase error by comparing the signs of the three blocks, i.e the
parity of signs. Here is one way to implement this. The circuit for a single block looks like
this,

|ψ⟩

Figure 3: Detecting phase flips in Shor 9-qubit code.

After applying it to all three blocks we get,

a |−⟩ |00⟩ ⊗ |+⟩ |00⟩ ⊗ |+⟩ |00⟩+ b |+⟩ |00⟩ ⊗ |−⟩ |00⟩ ⊗ |−⟩ |00⟩

Ignoring the |00⟩ we have something that looks the same as a phase flip error, a |−++⟩+
b |+−−⟩, which we know how to correct for.

Observe that Z1 |ψL⟩ = Z2 |ψL⟩ = Z3 |ψL⟩. This means our code is a degenerate code.
This is a property specific to quantum codes that classical codes do not have. Multiple
errors can achieve the same effect on the encoded state, and we can take advantage of this
sometimes.
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3.3 Bit flip and phase flip

Y1 |ψL⟩ = iX1Z1 |ψL⟩ (11)

= ia (|100⟩ − |011⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)
+ ib (|100⟩+ |011⟩)⊗ (|000⟩ − |111⟩)⊗ |000⟩ − |111⟩ (12)

First we undo the bit flip, we can detect this by measuring the parities of the first two
qubits. Then we apply the phase flip correction. The order in which errors occur doesn’t
matter but the order in which we correct them does matter.

3.4 Distance of code

Definition 3.1 (Quantum code). An [[n, k, d]] code uses n qubits to encode k logical qubits
and has distance d. The double brackets distinguish it from classical codes.

Shor’s 9-qubit code is a [[9, 1, 3]] code.

Question: Why don’t the errors get worse when we increase the number of qubits?
Suppose the probability of an error on 1 qubit is p, then with 9 qubits, the probability of
one error is ≈ 9p and the probability of two erros is ≈ 92p2. So, this works in the case when
92p2 < p.

4 Noise

ρ denotes a general mixed quantum state. A natural way of viewing noise is the interaction
of ρ with the environment.

ρA

UAE

E(ρ)

|0⟩E (discard)

Figure 4: A quantum noise channel.

ρA is our state and |0⟩E is the starting state of the environment. At some point, they
interact and UAE is the unitary describing this. Then, we discard the environment and are
left with E(ρ).

ρ 7→ E(ρ) is a quantum channel, also known as a CPTP map or a superoperator. The
properties it satisfies are natural, it takes mixed states to mixed states. A mixed state is
PSD and trace 1.
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1. (Trace preserving) tr E(ρ) = tr ρ

2. (Positive) If the input is PSD then the output will also be PSD,

ρ ≥ 0 ⇒ E(ρ) ≥ 0

Actually (2.) is not strong enough. There is a stronger condition,

3. (Completely positive) This models the case when ρ has subsystems A,B and the
environment only interacts with A. The result should still be a positive.

ρAB ≥ 0 ⇒ (EA ⊗ IB) (ρAB) ≥ 0

There are maps that satisfy (2.) but not (3.), they cannot be a result of a process like
this. Thus, a quantum channel is defined by properties (1.) and (3.).

Definition 4.1 (Steinspring representation). The Steinspring representation of a quantum
channel is defined as discarding the environment after applying a unitary on the system and
environment, as in Fig. 4. Any quantum channel has such a representation.

4.1 Kraus representation

Another way to think about channels is to treat discarding the environment as a partial trace
operation on the E register. We can calculate the partial trace by summing over the basis
for the E register.

E(ρ) = trE

(
UAE ρA ⊗ |0⟩⟨0|E U

†
AE

)
(13)

=
∑
i

⟨i|E Uρ⊗ |0⟩⟨0|U † |i⟩E (14)

=
∑
i

⟨i|E U |0⟩︸ ︷︷ ︸
Ki

ρ ⟨0|E U
† |i⟩E︸ ︷︷ ︸

K†
i

(15)

This expression gives matrices that acts just on the A register. The unitary acting on A and E
can be written as a block with rows and columns indexed by |0⟩E , |1⟩E . . . and ⟨0|E , ⟨1|E . . . .
Then,

E(ρ) =
∑
i

KiρK
†
i (16)

Definition 4.2 (Kraus operators). The operators on A given by Ki = ⟨0|E U |i⟩E are the
Kraus operators of the channel E . They satisfy,∑

i

K†
iKi = I (17)
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We can verify that they sum to the identity, because U †U = IAE.∑
i

K†
iKi =

∑
i

⟨0|E U
† |i⟩E ⟨i|E U |0⟩E (18)

= ⟨0|E U
†

(∑
i

|i⟩⟨i|

)
U |0⟩E (19)

= ⟨0|E U
†U |0⟩E (20)

= IA (21)

The channel can be thought of as taking a mixed state ρ and selecting one of the Ki’s to

act on it with some probability. i.e, with probability tr
(
KiρK

†
i

)
, it takes,

ρ 7→ KiρK
†
i

trKiρK
†
i

Thus, the output is a mixture over these terms for every i.
Note that these probabilities add up to 1. This is because, from the cyclic property

of trace, tr
(
KiρK

†
i

)
= tr

(
ρK†

iKi

)
and

∑
iK

†
iKi = I. So, we can think of each Ki as a

different error that the channel may apply with some probability.

Question: Are the Ki’s orthogonal?
They can be orthogonal sometimes but not in general. These Ki’s are just general matrices.

4.2 Example noise channels

These are some of the noise channels we might see.

4.2.1 Unitary channel

E(ρ) = UρU †

This has a single Kraus operator K1 = U . Examples so far are the Pauli X, Y, Z channels.
We will also see the channel that rotates by an angle θ,

Rθ =

(
e−iθ 0
0 eiθ

)
(22)

When θ is small, it doesn’t affect the state much.

4.2.2 Dephasing channel

This channel changes the state with some probability p.

E(ρ) = (1− p)ρ+ pZρZ (23)
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The Kraus operators are K1 =
√

(1− p)I,K2 =
√
pZ. This is an error you can see in a

real world. When p is small, it leaves the state alone. You might think that it gets worse
when p gets large, but not quite.

Consider p = 1
2
, on the state |ψ⟩ = a |0⟩+ b |1⟩,

E(|ψ⟩⟨ψ|) = a |0⟩⟨0|+ b |1⟩⟨1|

This channel completely destroys the superposition. Meanwhile, when p = 1, we can just
apply Z to undo it.

4.2.3 Depolarizing channel

E(ρ) = (1− p)ρ+
p

3
·XρX +

p

3
· Y ρY +

p

3
· ZρZ (24)

=

(
1− 4p

3

)
ρ+

4p

3
· I
2

(25)

I/2 is the maximally mixed state, which we can think of as garbage because it contains no
information about our state.

The Kraus representation is not unique, this is one example of that. Another set of Kraus
operators for the same channel is,{√

1− 4p

3
· I,

√
2p

3
|0⟩⟨0| ,

√
2p

3
|0⟩⟨1| ,

√
2p

3
|1⟩⟨0| ,

√
2p

3
|1⟩⟨1|

}
.

Next time we will cover more channels and general error correcting codes.
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